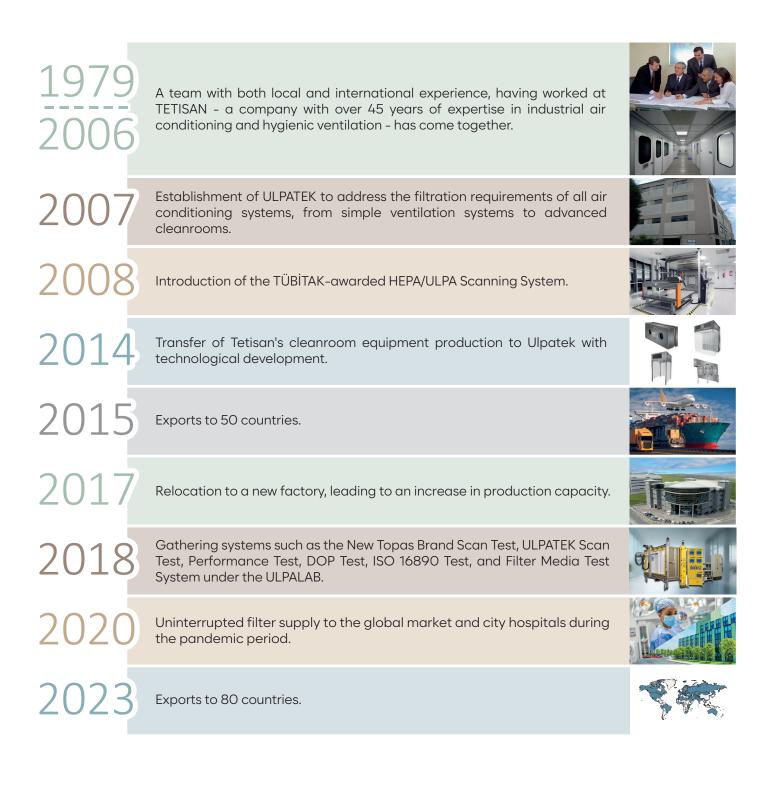


PRODUCT CATALOGUE

Advanced filtration for a better future!



Pioneering Air Filtration Solutions

Since its inception, Ulpatek has consistently delivered quality and innovation, setting reference points in the air filtration sector. With our extensive industry knowledge, advanced manufacturing facilities, and commitment to quality, we have paved our way to becoming a trusted name in over 80 countries worldwide. Our continuous dedication to research & development and engineering infrastructure ensures that our products meet global standards. It's not just about selling products; at Ulpatek, we offer solutions. Dive into our catalogue to discover the products that make us a preferred brand across borders.

The Milestones of Our Existence

ULPATEK, with its roots in hygienic ventilation expertise, has today transformed into a global frontrunner in air filtration; representing innovation, quality, and unwavering trust.

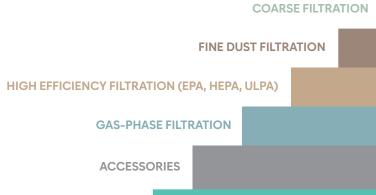
Advanced Manufacturing Facility

Welcome to Ulpatek's latest manufacturing center, where advanced technology meets sustainability. Designed with precision and environmental consciousness in mind, this facility ensures top-quality production while prioritizing safety and efficiency.

Global Presence

At Ulpatek, our dedication to superiority is without limits. With our products and services reaching over 80 countries worldwide, we are proud to have a truly global footprint. Our wide reach shows trust in our brand and showcases our dedication to meeting diverse demands and adapting to varied market nuances.

5


Product Excellence

We pride ourselves on our commitment to product excellence. Every piece we create is thoroughly tested in ULPALAB (Ulpatek Filter Testing Laboratory), ensuring that it meets the highest standards of quality and durability. Our expert engineers merge skill and creativity, precisely developing our products.

Whatever You Need, We Have the Filter, We Have the Solution

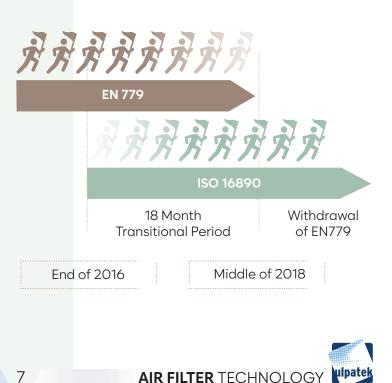
From simple ventilation systems to advanced clean rooms, our filters offer unmatched performance. Whatever the challenge, we deliver the solution.

CLEANROOM EQUIPMENT

Comparison Table

ASHRA	E Stando	ard 52.2.	2017	ISO 16890: 2018				EN 779: 2012			
Min. Efficiency Reporting Value	Particle	site Average Size Efficier e Range		% in Size Range (E_i) $E_m = (E_i + E_d)/2$ (E_i)		Efficiency	Initial Arrestance (A _m)	Filter Class	Average Arrestance (A _m) of Synthetic Dust	Average Efficiency (E _m) at 0.4 µm	Minimum Efficiency (E _{min})at 0.4 µm
value	Range 1	Range 2	Range 3	ePM ₁ %	ePM2,5 %	ePM ₁₀ %	Coarse %				
(MERV)	0.3-1.0 (mm)	1.0-3.0 (mm)	3.0-10.0 (mm)	0.3-1.0 (mm)	0.3-2,5 (mm)	0.3-10 (mm)	ISO Fine Dust		%	%	%
1			E₃ ≥ 20		· ·			G1	50 ≤ A _m ≤ 65		
2			E ₃ ≥ 20								
3			E₃ ≥ 20			A _m <50	G2	65≤A _m ≤80			
4			E₃ ≥ 20								
5			E ₃ ≥ 20					G3	80≤A _m ≤90		
6			E₃ ≥ 35				A _m ≥50	00			
7			E ₃ ≥ 50					G4	A _m ≤90		
8		E₂ ≥ 20	E ₃ ≥ 70								
9		E₂ ≥ 35	E ₃ ≥ 75			E; > 50		M5		40≤E _m ≤60	
10		E₂ ≥ 50	E ₃ ≥ 80								
11	E ₁ ≥20	E₂ ≥ 65	E₃ ≥ 85		E _m ≥ 50	E ;> 70		M6		60≤E _m ≤80	
12	E₁≥35	E₂ ≥ 80	E ₃ ≥90								
13	E1≥20	E₂ ≥ 85	E ₃ ≥ 90	E _m ≥50	E _m ≥ 65	E _i >80		F7		80≤E _m ≤90	E _{min} ≥35
14	E ₁ ≥75	E₂ ≥ 90	E₃ ≥ 95	E _m ≥70	E _m >80	E _i > 90		F8		90≤E _m ≤95	E _{min} ≥55
15	E ₁ ≥85	E ₂ ≥90	E₃ ≥ 95	E _m >80				F9		95 ≤ E _m	E _{min} ≥70
16	E1≥95	E₂ ≥ 95	E₃ ≥ 95						<u> </u>	, o m	

A_m= Average Arrestance, E_m= Average Efficiency, E_{min}= Minimum Efficiency, E_d= Discharged Efficiency, E_i= Initial Efficiency


ISO 16890 Standard for Air Filters Used in General Ventilation

ISO 16890 standard is used as a standard for air filter instead of EN 779 and ASHRAE 52.2. Measuring the efficiency of an air filter at a particle size range of 0,3 μ m to 10 μ m. The classification is carried out according to standard for particle size range 0,3-1,0 μ m, 0,3-2,5 μ m and 0,3-10 μ m. The process is considered while choosing filters according to more detailed and global standard.

Why EN 779 replaced?

A synthetic powder called ASHRAE dust is used in the efficiency test of an air filter according to EN 779: 2012 standard. The test is done by loading the filter with this powder in the laboratory environment. By this way, the efficiency of the filter can be calculated in the particle size of only 0.4 μm . In operating conditions, filters are exposed to pollutants with a variety of different sized particulate. Therefore, the data obtained in the laboratory is insufficient to determine the performance of an air filter.

The EN 779: 2012 standard which was used in the classification of Coarse filters, Medium Filters and Fine Filters replaced by the ISO 16890 standard. With this change in standard, filter users will are able to choose the filter much more accurate according to their needs.

ISO 16890 Classifications

ISO ePM₁	ISO ePM _{2,5}	ISO ePM10	ISO Coarse
ePM1 95%	ePM2,5 95%	ePM ₁₀ 95%	ISO Coarse 95%
ePM ₁ 90%	ePM2,5 90%	ePM ₁₀ 90%	ISO Coarse 90%
ePM₁ 85%	ePM2,5 85%	ePM ₁₀ 85%	ISO Coarse 85%
ePM1 80%	ePM2,5 80%	ePM ₁₀ 80%	ISO Coarse 80%
ePM ₁ 75%	ePM2,5 75%	ePM ₁₀ 75%	ISO Coarse 75%
ePM ₁ 70%	ePM2,5 70%	ePM ₁₀ 70%	ISO Coarse 70%
ePM₁ 65%	ePM2,5 65%	ePM ₁₀ 65%	ISO Coarse 65%
ePM160%	ePM2,5 60%	ePM ₁₀ 60%	ISO Coarse 60%
ePM1 55%	ePM2,5 55%	ePM ₁₀ 55%	ISO Coarse 55%
ePM₁ 50%	ePM2,5 50%	ePM ₁₀ 50%	ISO Coarse 50%
			ISO Coarse 45%
Requirement	Requirement	Requirement	ISO Coarse 40%
			ISO Coarse 35%
≥50% Initial	≥50% Initial	≥50% Initial	ISO Coarse 30%
Efficiency	Efficiency	Efficiency	ISO Coarse 25%
			ISO Coarse 20%
≥50%	≥50%	No discharged	ISO Coarse 15%
Discharged	Discharged	requirement	ISO Coarse 10%
Efficiency	Efficiency		ISO Coarse 5%
			No discharged
			requirement
ISO 16890		FN	779:2012
_			
A	● PM ₁₀		
	• PM ₂ ,5		●0,4 µ

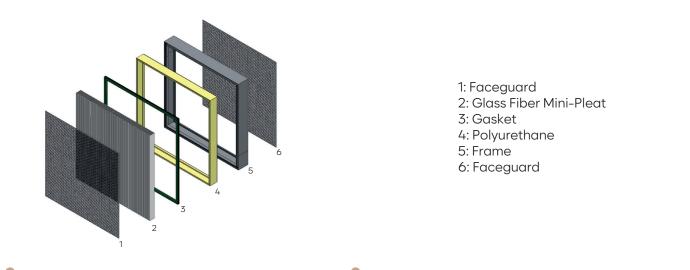
ISO 16890 standard considers for the particle size (Particulate Matter = PM) between 0,3 μ m and 10 μ m for efficiency evaluation.

For example; According to the test result, the F8 class V-Compact Filter is classified as "ISO $ePM_170\%$ ". This means that the filter seperates %70 of PM_1 particles. The "e" stands for efficiency in combination with the particulate matter (PM).

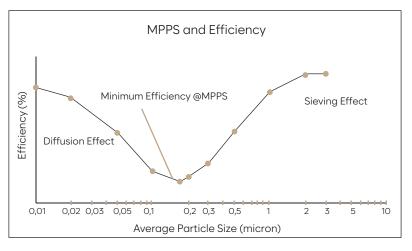
Product Code	Classification		ite Matter Effic	ciency (%)	Classification according to
Product Code	according to EN 779	$ISO ePM_1$	ISO ePM2,5	ISO ePM ₁₀	ISO 16890
FV-F8-592-592-292	F8	73	80	93	ISO ePM ₁ 70%

	ePM ₁	ePM2,5	ePM ₁₀	ISO Coarse			
ePM _{1min}	≥50%			_			
ePM2,5 min	_	≥50%		_			
ePM _{10 min}	_		≥50%	≤50%			

EN 779 vs. ISO 16890 Differences


EN 779 (cancellec	Filter classes F7-F8-F9 M5-M6 G2-G3-G4	The evaluation is carried out with a particle size of only 0,4 µm.	Determining of average efficiency / arrestance after loading synthetic dust. Mean of test measurements at 0,4 µm particulate size.	Dust holding capacity for synthetic test dust ASHRAE	Test final ΔP G1, G2, G3, G4 =250 Pa M5, M6, F7, F8, F9 = 450 Pa	Covers Europe (EN: European Standard).
ISO 16890	Four ISO groups ISO ePM1 ISO ePM2,5 ISO ePM10 ISO Coarse	The evaluation is carried out with a particle size from 0,3 µm-10 µm.	The efficiency is measured according to the particle range. Measuring efficiencies after 24 hours of IPA process. Calculating the ePMx efficiency with mean of test measurements.	Dust holding capacity for synthetic test dust ISO A2/AC Fine	Test final ΔP ePM ₁₀ ≤ 50% = 200 Pa ePM _X ≥ 50% = 300 Pa	Global (ISO, International Standard Organization).

EN 779:2012	EN ISO 16890 - range of actual measured average efficiencies						
Filter Class	ePM1	ePM _{2,5}	ePM ₁₀				
M5	5%-35%	10%-40%	40%-70%				
M6	10%-40%	20%-50%	60%-80%				
F7	40%-65%	65%-75%	80%-90%				
F8	65%-90%	75%-95%	90%-100%				
F9	80%-90%	85%-95%	90%-100%				


What is HEPA Filter?

A High Efficiency Particulate Air (HEPA) filter is a type of air filter designed to remove very fine airborne particles, such as virus, bacteria, and mold spores, from the air. These filters are commonly used in various applications, including pharmaceutical cleanrooms, healthcare facilities, microelectronics, and food & beverage, to improve indoor air quality and protect sensitive equipment or processes.

Understanding Most Penetrating Particle Size (MPPS)

MPPS refers to the particle size that is most difficult to capture and this value is between 0.1-0.2 microns. The standard determines efficiency based on this critical value. We can say that particles smaller or larger than MPPS are captures at higher efficiency compared to MPPS.

HEPA Filter Efficiency

The minimum efficiency of HEPA filters are 99.95% for class H13 and 99.995% for class H14 at most penetrating particle size (MPPS) according to the EN1822 standard.

We can give an example to explain what removal efficiency means;

The maximum number of particles that can pass through H14 filter is 5 from 100,000 particles of MPPS $(0,005\times100.000)/100=5)$

The maximum number of particles that can pass through H13 filter is 50 from 100,000 particles of MPPS $(0,05 \times 100.000)/100 = 50)$

EN 1822 and ISO 29463: HEPA Filter Tests and Standards

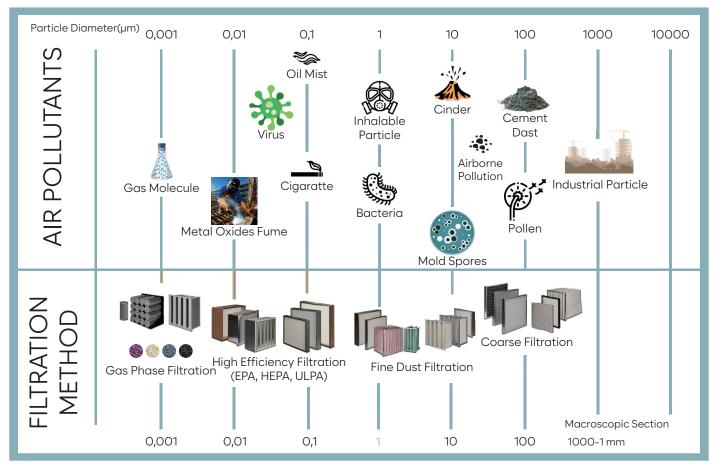
EN 1822, a European standard, provides a detailed classification system for HEPA and ULPA filters based on their filtration efficiency and ability to capture particles of various sizes. It outlines testing methods such as the leak test, the efficiency test, and the scanning test to ensure the filters meet their specified performance criteria.

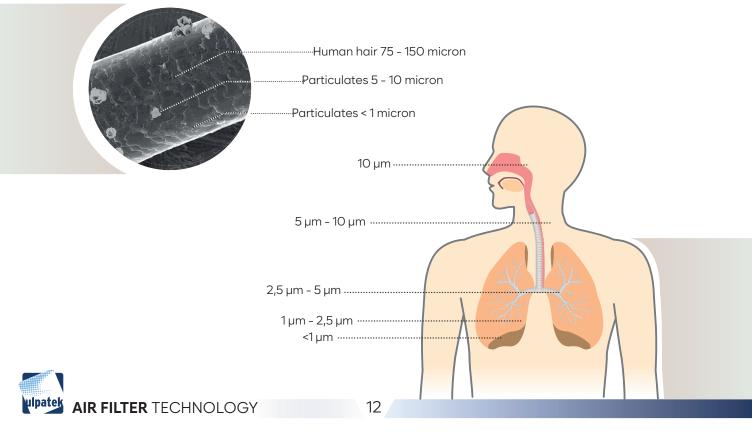
ISO 29463, on the other hand, is an international standard that was derived from and is largely harmonized with EN 1822. It consists of a series of standards (ISO 29463-1 to ISO 29463-5) that cover the general requirements, test procedures, performance classification, and marking of HEPA and ULPA filters in a global context. The purpose of ISO 29463 is to establish a uniform international standard, making it easier for manufacturers and customers to compare and select filters that meet their specific needs.

ISO 29463														
Class	Group	Overal	l Value	Local	Value		Overall Efficiency Test		Local Efficiency Test					EN 1822-1: 2019
	Q					Efficien	icy lest	(As ((As agreed between supplier and customer)					
ISO 15		≥95	≤5	-	-	•	• •				E11			
ISO 20	Е	≥99	≤1	-	-	•	•	Gro	Group E filters not tested for classification.			_		
ISO 25	E	≥99,5	≤0,5	-	-	•	•					cion.	E12	
ISO 30		≥99,9	≤0,1	-	-	•	•							-
ISO 35		≥99,95	≤0,05	≥99,75	≥0,25	•	•	•	•	•	•	•	•	H13
ISO 40	Н	≥99,99	≤0,01	≥99,95	≥0,05	•	•	•	•	•	•	-	-	-
ISO 45		≥99,995	≤0,005	≥99,975	≥0,025	•	•	•	•	•	•	-	-	H14
ISO 50		≥99,999	≤0,001	≥99,995	≥99,995 ≥0,005		•	•	-	-	•	-	-	-
ISO 55	≥99,9995 ≤0,00	≤0,0005	≥99,9975	≥0,0025	•	•	•	-	-	•	-	-	U15	
ISO 60		≥99,9999	≤0,0001	≥99,9995	≥0,0005	•	•	•	-	-	•	-	-	-
ISO 65	U	≥99,99995	≤0,00005	≥99,99975	≥0,00025	•	•	•	-	-	•	-	-	U16
ISO 70		≥99,99999	≤0,00001	≥99,9999	≥0,0001	•	•	•	-	-	•	-	-	-
ISO 75		≥99,999995	≤0,000005	≥99,9999	≥0,0001	•	•	•	-	-	•	-	-	U17
		·			•	ISO 29463-4	ISO 29463-5			ISO 29	463-4			
Test Met	hods:			Statistical e	efficiency	Test	Test	Annex C	Annex A	Annex B	Annex E	Annex F	Annex G	
Efficiency/Leak Tests:At Rated Airflow test may be performed.			with Movable Probe	with Static Probe	Scan Test at MPPS	Oil Thread Leak Test	Photo- meter Leak Test	PSL Leak Test	0.3-0.5 µm Leak Test	Photo- meter Overall Test	Scan Tests pe EN 1822			

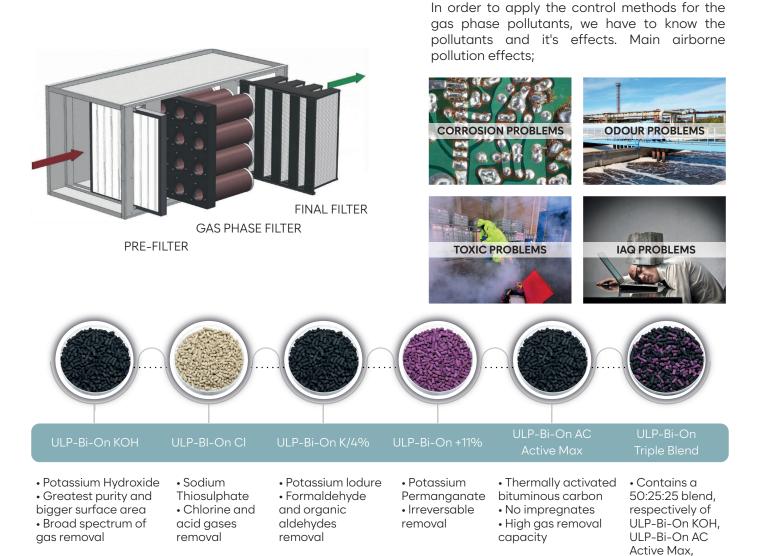
EN ISO 14644-1

ISO 14644-1 defines the classification of air cleanliness in cleanrooms and associated controlled environments exclusively in terms of concentration of airborne particles. Only particle populations having cumulative distributions based on threshold (lower limit) particle sizes ranging from 0,1 μ m to 5 μ m are considered for classification purposes.


ISO Class Number	Maximum	Maximum allowable concentrations (particles/m³) for particles equal to and greater than the considered sizes (a)									
Number	0,1µm	0,2 µm	0,3 µm	0,5 µm	1,0 µm	5,0 µm	1	particles/ft ³			
ISO 1	10	(d)	(d)	(d)	(d)	(e)	1	-			
ISO 2	100	24(b)	10(b)	(d)	(d)	(e)	1	-			
ISO 3	1.000	237	102	35(b)	(d)	(e)]	1			
ISO 4	10.000	2.370	1.020	352	83(b)	(e)]	10			
ISO 5	100.000	23.700	10.200	3.520	832	(d), (e), (f)		100			
ISO 6	1.000.000	237.000	102.000	35.200	8.320	293]	1.000			
ISO 7	(c)	(c)	(c)	352.000	83.200	2.930]	10.000			
ISO 8	(c)	(c)	(c)	3.520.000	832.000	29.300]	100.000			
ISO 9	(c)	(c)	(c)	35.200.000	8.320.000	293.000]	-			


Cleanroom Classification

Particle Matter


Airborne pollution sources are various which can be from natural sources like volcanos, thermal sources, pollens, sand storms and from industrial life like factories, automobile emissions, jet fuels, garbage dumps ete. Pollutants are divided in to three physical conditions as solids, liquids and gases. Effective pollution control can be easily made by particulate and gas phase filtration. These filtration methods and applications are define at ISO 16890, EN 1822, ISO 29463, ISO 10121-3. Airborne pollutants comparison chart shows size differences related particulate and gas phase filtration.

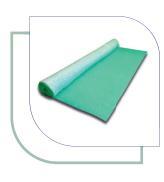
Gas Phase Filtration

Gas phase filtration and particulate filtration work together for acceptable indoor air quality in controlled environments. Gas pollutants are filtered with Ulpatek's gas phase air filters which are produced from one or mix filter media. Particulate pollutants are controlled with particulate filters which are mentioned in related standards as course, fine and high efficiency filters. Gas phase filter media (pellets) generally are produced using carbon, zeolite, alumina or coconut-based media. Gas phase filtration occurs with the two different methods which are physical and chemical.


Ulpatek has various type of media which are selected according to the target pollutants.

		Gas Phase Pollutants											
Product Family	С"Ну	Cl_2	Odors	VOC's	H ₂ S	SO ₂	NO ₂	НСНО	HCI	Hg	R.active lodine	Merc	$\rm NH_3$
ULP-Bi-On AC Active Max	\checkmark		\checkmark	\checkmark									
ULP-Bi-On +11%					\checkmark	\checkmark	\checkmark	\checkmark					
ULP-Bi-On +11% / AC					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
ULP-Bi-On KOH		\checkmark			\checkmark	\checkmark			\checkmark			\checkmark	
ULP-Bi-On KI4%					\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	
ULP-Bi-On ACPA				\checkmark									\checkmark
ULP-Bi-On Cl		\checkmark											
ULP-Bi-On S										\checkmark			
ULP-Bi-On Triple Blend		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						

ULP-Bi-On +6%


SPECIFICATION

SYNTHETIC

ROLL FILTER

GLASS FIBER ROLL FILTER

GLASS FIBER PANEL FILTER

FANCOIL FILTER

Applications:

Pre-filter for ventilation equipment and HVAC Basic ventilation systems

Highlights:

•

Fire resistant (M1 / F1)

MERV 2 - MERV 10 acc. to ASHRAE 52.2

Filter Class (EN 779)	G2, G3, G4, M5
Filter Class (ISO 16890)	Coarse 25%, 45%, 55%, 80%
Media	Synthetic Fiber
Rec. Final Pressure Drop EN 13053	Initial ΔP +50 Pa or initial ΔP x3 whichever is lower
Max. Operating Temp.	80°C
Thickness	10 - 15 - 20 - 25- 30 mm

Applications:
Pre-filter for ventilation equipment and
HVAC
Paint booths

Dust / paint holder

High dust holding capacity

Filter Class (EN 779)	G3, G4	
Filter Class (ISO 16890)	Coarse 45%, 55%	
Media	Glass Fiber	
Rec. Final Pressure Drop EN 13053	Initial ΔP +50 Pa or initial ΔP x3 whichever is lower	
Max. Operating Temp.	120°C	
Thickness	75 - 100 mm	/

Applications:

Highlights:

•

Pre-filter for ventilation equipment and HVAC Paint booths

MERV 5 - MERV 8 acc. to ASHRAE 52.2

Highlights:

Applications: Fan-coil Units

Highlights:

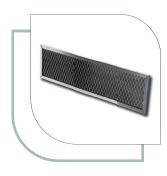
.

- High dust holding capacity •
 - Dust / paint holder

Robust construction

MERV 5 - MERV 8 acc. to ASHRAE 52.2

Filter Class (EN 779)	G3, G4
Filter Class (ISO 16890)	Coarse 45%, 55%
Media	Glass Fiber
Frame	Cardboard
Rec. Final Pressure Drop EN 13053	Initial ΔP +50 Pa or initial ΔP x3 whichever is lower
Max. Operating Temp.	80°C


G2, G3, G4
Coarse 25%, 45%, 55%
Synthetic Fiber
Galvanized
Initial ΔP +50 Pa or initial ΔP x3 whichever is lower
80°C
6 - 8 - 10 mm
Double Side

MERV 2 - MERV 8 acc. to ASHRAE 52.2

ulpatek **AIR FILTER TECHNOLOGY**

SPECIFICATION

POLYURETHANE

FANCOIL FILTER

Applications:

• Fan-coil Units

Highlights:

- Robust construction
- Washable
- MERV 2 MERV 4 acc. to ASHRAE 52.2

Filter Class (EN 779)	G2
Filter Class (ISO 16890)	Coarse 25%
Media	Polyurethane
Frame	Galvanized
Rec. Final Pressure Drop EN 13053	Initial ΔP +50 Pa or initial ΔP x3 whichever is lower
Max. Operating Temp.	80°C
Standard depth	6 - 8 - 10 mm
Expended Metal(Mesh)	Double Side

POLYURETHANE FILTER MAT

Applications:

Pre-filter for ventilation equipment and HVAC

Highlights:

.

Washable

MERV 2 - MERV 6 acc. to ASHRAE 52.2

Filter Class (EN 779)	G2, G3
Filter Class (ISO 16890)	Coarse 25%, 40%
Rec. Final Pressure Drop EN 13053	Initial ΔP +50 Pa or initial ΔP x3 whichever is lower
Max. Operating Temp.	80°C
Standard depth	6 - 8 - 10 - 20 mm

POL	YURE	IHANE	
ZIG-	ZAGF	FILTER	

METAL FILTER

Applications:

Pre-filter for ventilation equipment and HVAC

Highlights:

Applications:

Highlights:

•

Washable

- WashableOptimized operational costs
- Easy to handle and install

Grease or oil mist seperation in kitchen ventilation applications Coarse particle trapper

Robust construction

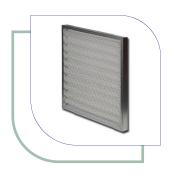
- Robust construction
- (two side mesh)
- MERV 5, MERV 6 acc. to ASHRAE 52.2

Resistance to high temperatures

MERV 2 - MERV 6 acc. to ASHRAE 52.2

Optimized operational cost

Filter Class (EN 779)	G3
Filter Class (ISO 16890)	Coarse %40
Media	Polyurethane
Frame	Galvanized, Stainless Steel
Rec. Final Pressure Drop EN 13053	Initial ΔP +50 Pa or initial ΔP x3 whichever is lower
Max. Operating Temp.	80°C
Standard depth	48 - 96 mm


G2, G3
Coarse 25%, 40%
Expanded metal, wire mesh (Aluminium, Galvanized, Stainless Steel)
Galvanized, Aluminium, Stainless Steel
Initial ΔP +50 Pa or initial ΔP x3 whichever is lower
200°C
25 - 48 mm

AIR FILTER TECHNOLOGY

SPECIFICATION

ZIG-ZAG FILTER

CARDBOARD FRAME ZIG-ZAG FILTER

Applications:

Pre-filter for ventilation equipment and HVAC

Highly effective with coarse dust

Highlights:

- Robust design
- Easy installation
- Various frame sizes with any dimensions
- MERV 5 MERV 8 acc. to ASHRAE 52.2

Filter Class (EN 779) G3, G4 Filter Class (ISO 16890) Coarse 45%, 55% Media Synthetic Fiber Galvanized Metal, Frame Stainless Steel Initial ΔP +50 Pa or initial Rec. Final Pressure Drop EN 13053 ΔP x3 whichever is lower 80°C Max. Operating Temp. Standard depth 48 - 96 mm

CARDBOARD FRAME

ZIG-ZAG FILTER (METAL FREE)

SYNTHETIC BLUE ZIG-ZAG FILTER

Applications:

Pre-filter for ventilation equipment and HVAC Highly effective with coarse dust

Highlights:

- Simple and light weight
- Disposable
- Moisture resistant cardboard
- MERV 7, MERV 8 acc. to ASHRAE 52.2

Filter Class (EN 779)	G4
Filter Class (ISO 16890)	Coarse 65%
Media	Synthetic Fiber
Frame	Cardboard
Rec. Final Pressure Drop EN 13053	Initial ΔP +50 Pa or initial ΔP x3 whichever is lower
Max. Operating Temp.	80°C
Standard depth	48 - 96 mm

	Applications:	
--	---------------	--

Pre-filter for ventilation equipment and HVAC Highly effective with coarse dust

Highlights:

- Disposable
- Simple and light weight
- Higher filtration area
- Energy efficient
- Longer lifespan with high holding capacity
- Hot-melt reinforced pleats, robust construction
- MERV 7, MERV 8 acc. to ASHRAE 52.2

Applications:

Pre-filter for ventilation equipment and HVAC

Highly effective with coarse dust

- Robust fiber structure
- Disposable
- Simple and light weight
 Moisture resistant cardbox
 - Moisture resistant cardboard
- Various capacity options enable energy-efficient models with high dust holding capacity (H model)
- MERV 7, MERV 8 acc. to ASHRAE 52.2

Filter Class (EN 779)	G4
Filter Class (ISO 16890)	Coarse 65%
Media	Synthetic Fiber
Frame	Cardboard
Rec. Final Pressure Drop EN 13053	Initial ΔP +50 Pa or initial ΔP x3 whichever is lower
Max. Operating Temp.	80°C
Standard depth	48 - 96 mm

Filter Class (EN 779)	G4
Filter Class (ISO 16890)	Coarse 55%
Media	Synthetic Blue
Frame	Cardboard
Rec. Final Pressure Drop EN 13053	Initial ΔP +50 Pa or initial ΔP x3 whichever is lower
Max. Operating Temp.	80°C
Standard depth	48 - 96 mm

SYNTHETIC FRAME

ZIG-ZAG FILTER (METAL FREE)

PRO BAG FILTER

Applications:

Pre-filter for ventilation equipment and HVAC Highly effective with coarse dust

Highlights:

- Robust construction with synthetic frame
- Highly resistant to moisture
- Disposable

Applications:

Highlights:

HVAC Power plants

•

- Simple and light weight
- Higher filtration area
- Energy efficient
- Longer lifespan with high holding capacity
- Hot-melt reinforced pleats
- MERV 7, MERV 8 acc. to ASHRAE 52.2

Pre-filter for ventilation equipment and

No special mechanical support required

MERV 5 - MERV 8 acc. to ASHRAE 52.2

Self supporting pockets

Robust construction

High dust holding capacity

SPECIFICATION

Filter Class (EN 779)	G4
Filter Class (ISO 16890)	Coarse 65%
Media	Synthetic Fiber
Frame	Synthetic
Rec. Final Pressure Drop EN 13053	Initial ΔP +50 Pa or initial ΔP x3 whichever is lower
Max. Operating Temp.	80°C
Standard depth	48 - 96 mm

Filter Class (EN 779)	G3, G4
Filter Class (ISO 16890)	Coarse 45%, 55%
Media	Synthetic Fiber
Frame	Galvanized
Rec. Final Pressure Drop EN 13053	Initial ΔP +50 Pa or initial ΔP x3 whichever is lower
Max. Operating Temp.	80°C
Frame depth	20 - 25 mm

Recommendations for Coarse Filtration Filters

Regular Inspection: Check the filter regularly for visible signs of clogging or damage. A blocked filter can hinder system performance and can be detrimental to subsequent fine filters.

Final Pressure Drop: According to the EN 13053 standard, the final pressure drop is determined. ISO Coarse class is calculated by adding 50 Pascal (Pa) to the initial pressure drop of clean filters or by calculating a value up to three times smaller than the initial pressure drop of clean filters.

This method is used to determine a recommended final pressure drop value at the end of the filter's service life.

Correct Installation: Ensure the filter is correctly installed, following the manufacturer's directions. An improperly installed filter can compromise its effectiveness. The filter pleats or pockets must be mounted vertically on the ground.

Maintain a Stock: These filters are recommended to be kept in stock as they hold the most particles and require the highest replacement frequency compared to other stage filters. Always keep a replacement on hand to ensure minimal downtime during replacements.

Washing or Cleaning: Most of the coarse filters are designed for single use, some of the types might be washable or cleanable. It's essential to refer to the manufacturer's guidelines. However, repeated cleaning can reduce the filter's efficiency, so always ensure it's still performing as needed.

FINE DUST FILTRATION

M5, M6, F7, F8, F9

Synthetic Fiber Galvanized

Coarse 85%, ePM10 70%,

Initial ΔP +100 Pa or initial

ΔP x3 whichever is lower

ePM2,5 60%, 75%, 85%

Filter Class (EN 779)

Rec. Final Pressure

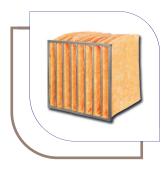
Max. Operating Temp.

Drop EN 13053

Frame depth

Media

Frame

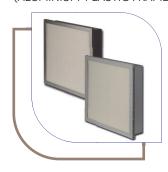

Filter Class (ISO 16890)

SPECIFICATION

SYNTHETIC

BAG FILTER

GLASS FIBER BAG FILTER


PANEL

FILTER (METAL-PLASTIC FRAME)

RIGID

FILTER (ALUMINIUM-PLASTIC FRAME)

Applications:

Capturing fine particles Second or final stage filter in HVAC Pre-filter for HEPA filters

Highlights:

•

- Middle support prevents bypass between filter pockets
- Any special dimensions
- MERV 9 MERV 16 acc. to ASHRAE 52.2

Applications:

Capturing fine particles Second or final stage in HVAC Pre-filter for HEPA filters

Highlights:

- High dust holding capacity
- Longer lifespan Low initial pressure drop •
- Less energy consumption
- Middle support prevents bypass between filter pockets
- MERV 9 MERV 16 acc. to ASHRAE 52.2

Frame depth	20 - 25 mm
Filter Class (EN 779)	M5, M6, F7, F8, F9
Filter Class (ISO 16890)	ePM10 60%, 65%, ePM1 55%, 80%, 85%
Media	Glass Fiber
Frame	Galvanized
Rec. Final Pressure Drop EN 13053	Initial ΔP +100 Pa or initial ΔP x3 whichever is lower
Max. Operating Temp.	100°C

20 - 25 mm

80°C

Applications:

Capturing fine particles Second or final stage filter in HVAC Pre-filter for HEPA filters

Highlights:

- Eurovent certified
- Large filtration area
- Simple and light weight
- High dust holding capacity •
- Low initial pressure drop
- MERV 11 MERV 16 acc. to ASHRAF 52.2

(Filter Class (EN 779)	M6, F7, F8, F9
	Filter Class (ISO 16890)	ePM10 75%, ePM1 55% ,75% ,85%
	Media	Glass Fiber
	Frame	Galvanized, Plastic
	Rec. Final Pressure Drop EN 13053	Initial ΔP +100 Pa or initial ΔP x3 whichever is lower
	Max. Operating Temp.	80°C
	Standard depth	48 - 96 mm
	Faceguard / Gasket	Available on request

Applications:

Capturing fine particles Second or final stage filter in HVAC Pre-filter for HEPA filters

Highlights:

- Eurovent certified
- Large filtration area
- Simple and light weight
- High dust holding capacity
- Low initial pressure drop
- MERV 11 MERV 16 acc. to ASHRAE 52.2

	Filter Class (EN 779)	M6, F7, F8, F9
	Filter Class (ISO 16890)	ePM10 75%, ePM1 55% ,75% ,80%, 85%
	Media	Glass Fiber
6	Frame	Aluminium, Polystyrene (PS)
	Rec. Final Pressure Drop EN 13053	Initial ΔP +100 Pa or initial ΔP x3 whichever is lower
FOR T	Max. Operating Temp.	80°C
	Depth	100 and 130 mm
	Faceguard	Available on request
	Rec. Final Pressure Drop EN 13053 Max. Operating Temp. Depth	Initial ΔP +100 Pa or init ΔP x3 whichever is lowe 80°C 100 and 130 mm

AIR FILTER TECHNOLOGY

FINE DUST FILTRATION

M6, F7, F8, F9

ePM10 75%,

Glass Fiber

Polystyrene (PS)

ePM155%, 75%, 80%

Initial ΔP +100 Pa or initial

ΔP x3 whichever is lower

Filter Class (EN 779)

Rec. Final Pressure

Drop EN 13053

Media

Frame

Filter Class (ISO 16890)

SPECIFICATION

V-COMPACT FILTER

SUPERIOR MODEL

V-COMPACT FILTER

HIGH TEMPERATURE

V-COMPACT FILTER

Applications:

Capturing fine particles Second or final stage filter in HVAC Pre-filter for HEPA filters

Highlights:

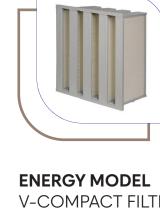
- Eurovent certified
- High temperature resistant
- Large filtration area
- Simple and light weight •
- High dust holding capacity
- Low initial pressure drop
- MERV 11 MERV 16 acc. to ASHRAE 52.2

RMA	Max. Operating Temp.	80°C
	Faceguard	Available on request
	Filter Class (EN 779)	M6, F7, F8, F9
	Filter Class (ISO 16890)	ePM10 75%, ePM1 55%, 75%, 85%
	Media	Glass Fiber
0	Frame	Polystyrene (PS)
PERF	Rec. Final Pressure Drop EN 13053	Initial ΔP +100 Pa or initial ΔP x3 whichever is lower

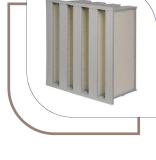
ت " ö	
RMA	Max. Operating
	Faceguard

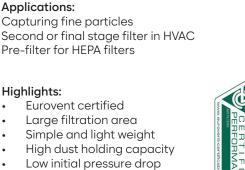
	ePM1 55%, 75%, 85%	
	Glass Fiber	
	Polystyrene (PS)	
al Pressure 1 13053	Initial ΔP +100 Pa or initial ΔP x3 whichever is lower	
perating Temp.	80°C	
ard	Available on request	

Filter Class (EN 779)	F7, F9
Filter Class (ISO 16890)	ePM1 65%, 80%
Media	Synthetic Nano
Frame	Polystyrene (PS)
Rec. Final Pressure Drop EN 13053	Initial ΔP +100 Pa or initial ΔP x3 whichever is lower
Max. Operating Temp.	80°C
Faceguard / Gasket	Available on request
	Filter Class (ISO 16890) Media Frame Rec. Final Pressure Drop EN 13053 Max. Operating Temp.


1	Filter Class (EN 779)	M6, F7, F8, F9
	Filter Class (ISO 16890)	ePM10 75%, ePM1 55%, 75%, 85%
	Media	Glass Fiber
	Frame	Polycarbonate
	Rec. Final Pressure Drop EN 13053	Initial ΔP +100 Pa or initial ΔP x3 whichever is lower
RMA	Max. Operating Temp.	120°C
	Faceguard / Gasket	Available on request

AIR FILTER TECHNOLOGY


19



HVAC MODEL

V-COMPACT FILTER

MERV 11 - MERV 16 acc. to ASHRAE 52.2

Applications:

Applications:

Highlights:

•

Capturing fine particles

Pre-filter for HEPA filters

Eurovent certified Large filtration area

ASHRAE 52.2

Simple and light weight

Low initial pressure drop MERV 11 - MERV 16 acc. to

High dust holding capacity

Second or final stage filter in HVAC

Capturing fine particles Final stage filter for comfort ventilation Pre-filter for HEPA filters

- Eurovent certified
- Energy class A+
- Extremely large filtration area
- Very low initial pressure drop
- Simple and light weight Very high dust holding
- capacity MERV 13, MERV 15, MERV 16 acc. to ASHRAE 52.2

FINE DUST FILTRATION

SPECIFICATION

X LARGE V-COMPACT FILTER

Applications:

Gas turbine air intake systems

Highlights:

- Large filtration area
- High dust holding capacity
- Low initial pressure drop
- MERV 11 MERV 16 acc. to ASHRAE 52.2

Filter Class (EN 779)	M6, F7, F8, F9
Filter Class (ISO 16890)	ePM10 65%, ePM1 55% ,75% ,85%
Media	Glass Fiber
Frame	Polystyrene (PS)
Rec. Final Pressure Drop EN 13053	Initial ΔP +100 Pa or initial ΔP x3 whichever is lower
Max. Operating Temp.	80°C
Faceguard / Gasket	Available on request

FINE DUST FILTER WITH

ALUMINIUM SEPERATOR

(METAL-MDF FRAME)

Applications: Capturing fine particles Suitable for ATEX environment High temperature conditions

Highlights:

- Static electricity grounding (optional)
- Corrugated aluminium seperator
- Robust construction with metal frame
- MERV 11 MERV 16 acc. to ASHRAE 52.2

Filter Class (EN 779)	M6, F7, F8, F9
Filter Class (ISO 16890)	ePM10 70%, ePM1 55% ,70% ,80%
Media	Glass Fiber
Frame	Galvanized, Stainless Steel, MDF
Rec. Final Pressure	Initial ΔP +100 Pa or initial
Drop EN 13053	$\Delta P x3$ whichever is lower
Max. Operating Temp.	up to 80°C, 120°C, 260°C
Faceguard	Available on request
Gasket	Silicon, EPDM and PU Foam
Flange	Without, single, double
Seperator	Corrugated Aluminium

Recommendations for Fine Filtration Filters

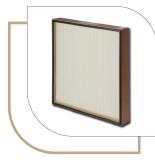
Regular Inspection: Check the filter regularly for visible signs of clogging or damage. A blocked filter can hinder system performance and can be detrimental to subsequent fine filters.

Final Pressure Drop: According to the EN 13053 standard, the final pressure drop is determined. ISO ePM₁, ISO ePM_{2,5}, and ISO ePM₁₀ classes is calculated by either adding 100 Pascal (Pa) to the initial pressure drop of clean filters or by calculating a value up to three times smaller than the initial pressure drop of clean filters. This method is used to determine a recommended final pressure drop value at the end of the filter's service life.

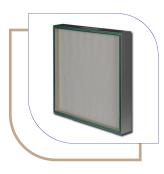
Correct Installation: Ensure the filter is correctly installed, following the manufacturer's directions. An improperly installed filter can compromise its effectiveness. The filter pleats or pockets must be mounted vertically on the ground.

Maintain a Stock: These filters are recommended to be kept in stock as they hold the most particles and require the highest replacement frequency compared to other stage filters. Always keep a replacement on hand to ensure minimal downtime during replacements.

Washing or Cleaning: Most of the coarse filters are designed for single use, some of the types might be washable or cleanable. It's essential to refer to the manufacturer's guidelines. However, repeated cleaning can reduce the filter's efficiency, so always ensure it's still performing as needed.



HEPA, ULPA, EPA CEILING FILTER (ALUMINIUM FRAME)



HEPA, EPA CEILING FILTER

(MDF FRAME)

GEL TYPE HEPA, ULPA CEILING FILTER

GEL TYPE HEPA CEILING

FILTER WITH FLANGE (RSR : ROOM SIDE REPLACEMENT)

Applications:

Final filter for cleanrooms and LF Units Life science Healthcare Microelectronics Food & Beverages

Highlights:

- Guarented leak free
- Individiual test certificate (acc. to EN 1822 - ISO 29463)
- Optimized velocity distribution
- Less energy consumption Suitable for HEPA Boxes and Cabinets

Applications:

Final filter for cleanrooms Healthcare Pre-filter for HEPA filters

Highlights:

- Individiual test certificate (acc. to EN 1822 ISO 29463)
- Disposable

Applications:

Life science Healthcare Microelectronics Food & Beverages

Highlights:

(self healing) Guarented leak free

• Optimized velocity distribution

Final filter for cleanrooms and LF Units

High quality fluid gel gasket

EN 1822 - ISO 29463)

Individiual test certificate (acc. to

Optimized velocity distribution

• Suitable for HEPA Boxes and Cabinets

Filter Class (EN 1822)	E10, E11, E12, H13, H14, U15
Filter Class (ISO 29463)	ISO 15E, 25E, 35H, 45H, 55U
Media	High quality glass fiber
Frame	Anodized extruded aluminium
Rec. Final Pressure Drop	Initial pressure drop x2, (max. 600 Pa)
Max. Operating Temp.	80°C
Faceguard	Aluminium sheet (powder coated)
Gasket	EPDM flat, EPDM flat continuous and PU foam

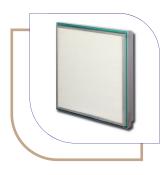
SPECIFICATION

Filter Class (EN 1822)	E10, E11, E12 ,H13, H14
Filter Class (ISO 29463)	ISO 15E, 25E, 35H, 45H
Media	High quality glass fiber
Frame	MDF
Rec. Final Pressure Drop	Initial pressure drop x2, (max. 600 Pa)
Max. Operating Temp.	80°C
Faceguard	Aluminium sheet (powder coated)
Gasket	EPDM flat, EPDM flat continuous and PU foam

Filter Class (EN 1822)	H13, H14, U15, U16, U17
Filter Class (ISO 29463)	ISO 35H, 45H, 55U, 65U, 75U
Media	High quality glass fiber
Frame	Anodized extruded aluminium
Rec. Final Pressure Drop	Initial pressure drop x2, (max. 600 Pa)
Max. Operating Temp.	80°C
Faceguard	Aluminium sheet (powder coated)
Gasket	Gel

Filter Class (EN 1822)	H13, H14,
Filter Class (ISO 29463)	ISO 35H, 45H
Media	High quality glass fiber
Frame	Anodized extruded aluminium
Rec. Final Pressure Drop	Initial pressure drop x2, (max. 600 Pa)
Max. Operating Temp.	80°C
Faceguard	Aluminium sheet (powder coated)
Gasket	Gel

ulpatek


Applications:

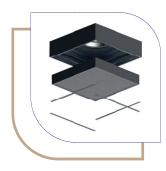
Final filter for cleanrooms and LF units Life science Healthcare Microelectronics Food & Beverages

- Additional stainless steel L profile
- on flange
- High quality fluid gel gasket (self healing)
- Guarented leak free
- Individiual test certificate (acc. to EN 1822 - ISO 29463)
- Optimized velocity distribution

REVERSE GEL TYPE

HEPA CEILING FILTER (RSR : ROOM SIDE REPLACEMENT)

HEPA, ULPA CEILING FILTER (KNIFE EDGE PROFILE)


TERMINAL HEPA FILTER

(WITHOUT-WITH DIVIDER)

TERMINAL HOOD WITH

CHANGEABLE HEPA FILTER (RSR : ROOM SIDE REPLACEMENT)

Applications:

Final filter for cleanrooms and LF units Life science Healthcare Microelectronics Food & Beverages

Highlights:

- Reverse L-type side gel gasket on the middle of frame
- High quality fluid gel gasket (self healing)
- Guarented leak freeIndividual test certificate (acc. to
 - EN 1822 ISO 29463) Optimized velocity distribution

Applications:

Final filter for cleanrooms and LF Units Suitable for Fan Filter Units Life science Healthcare Microelectronics Food & Beverages

Highlights:

- High quality glass fiber media
- Guarented leak free
- Individiual test certificate (acc. to EN 1822 - ISO 29463)
 Optimized velocity distribution

Applications:

Final filter for cleanrooms Life science Microelectronics Food & Beverages

Highlights:

- Self-contained air inlet, no additional housing required
- ΔPa and %100 DOP nozzles exist (accessible from technical side)
- Guarented leak free
- Individiual test certificate (acc. to EN 1822 - ISO 29463)
 - Optimized velocity distribution

Applications:

Final filter for cleanrooms Life science Microelectronics

Highlights:

- Self-contained air inlet
- Self-boxed, need for narrower space
- ΔPa and %100 DOP nozzles exist (accessible from technical side)
- Guaranteed leak-free
- Individiual test certificate (acc. to EN 1822 - ISO 29463)
- Filter change from the room side

Filter Class (EN 1822)	E10, E11, E12, H13, H14,
Filter Class (ISO 29463)	ISO 15E, 25E, 35H, 45H
Media	High quality glass fiber
Frame	Anodized extruded aluminium
Rec. Final Pressure Drop	Initial pressure drop x2, (max. 600 Pa)
Max. Operating Temp.	80°C
Faceguard	Aluminium sheet (powder coated)
Gasket	Gel

Filter Class (EN 1822)	H13, H14, U15, U16, U17
Filter Class (ISO 29463)	ISO 35H, 45H, 55U, 65U, 75U
Media	High quality glass fiber
Frame	Anodized extruded aluminium
Rec. Final Pressure Drop	Initial pressure drop x2, (max. 600 Pa)
Max. Operating Temp.	80°C
Faceguard	Aluminium sheet (powder coated)
Gasket	PU Foam

Filter Class (EN 1822)	H13, H14, U15, U16, U17
Filter Class (ISO 29463)	ISO 35H, 45H, 55U, 65U, 75U
Media	High quality glass fiber
Frame	Anodized extruded aluminium
Rec. Final Pressure Drop	Initial pressure drop x2, (max. 600 Pa)
Max. Operating Temp.	80°C
Faceguard	Aluminium sheet (powder coated)

Filter Class (EN 1822)	H13, H14, U15
Filter Class (ISO 29463)	ISO 35H, 45H, 55U
Media	High quality glass fiber
Frame	Anodized extruded aluminium
Rec. Final Pressure Drop	Initial pressure drop x2, (max. 600 Pa)
Max. Operating Temp.	80°C
Faceguard	Aluminium sheet (powder coated)

AIR FILTER TECHNOLOGY

SPECIFICATION

Filter Class (EN 1822)

Filter Class (ISO 29463)

SPECIFICATION

HIGH CAPACITY HEPA

FILTER WITH SINGLE PLEAT Applications: (METAL-MDF FRAME)

HIGH CAPACITY HEPA FILTER WITH V MODULE DESIGN

(METAL FRAME)

HIGH CAPACITY HEPA

FILTER WITH V MODULE DESIGN (PLASTIC FRAME)

HIGH CAPACITY

NUCLEAR FILTER WITH **V MODULE DESIGN**

Final filter for hygenic type AHU's Life science Healthcare Operating theatre LF units Food & Beverages

Highlights:

- For high airflow rates (2000-3000 m³/h) for 610x610x292 mm
- High quality glass fiber media
- ISO 29463 for H13 H14
- Optimized velocity distribution

Final filter for hygenic type AHU's

Operating theatre LF units

Applications:

Life science Healthcare Food & Beverages

Highlights:

•

.

- Guarented leak free
- Tested and certified acc to EN 1822 -

Frame

Media

Galvanized, Alu. and Stainless Steel, MDF Initial pressure drop x^2 , **Rec. Final Pressure** (max. 600 Pa) Drop Max. Operating Temp. 80°C Faceguard One side standard EPDM, EPDM Flat continous Gasket and PU Foam

H13, H14

ISO 35H, 45H

High quality glass fiber

olications: al filter for hygenic type AHU's	Filter Class (EN 1822)	H13, H14
	Filter Class (ISO 29463)	ISO 35H, 45H
althcare	Media	High quality glass fiber
od & Beverages erating theatre LF units	Frame	Galvanized, Stainless Steel Aluminium
hlights: For high airflow rates (3000-4000 m ³ /h) High quality glass fiber media Guarented leak free Tested and certified acc to	Rec. Final Pressure Drop	Initial pressure drop x2, (max. 600 Pa)
	Max. Operating Temp.	80°-120°C
	Gasket	EPDM, EPDM Flat continous and PU Foam
EN 1822 - ISO 29463	Design	U-Module
	0	

Ap	olications:	

Final filter for hygenic type AHU's Life science Healthcare Food & Beverages

Highlights:

- For high airflow rates (3000-4000 m³/h)
- High quality glass fiber media
- Guarented leak free •
- Tested and certified acc to EN 1822 - ISO 29463 for H13 - H14

Light weight

Applications:

Shelter ventilation

- For high airflow rates (3400 m³/h)
- High quality glass fiber media
- **Robust Construction**
- Guarented leak free
- Tested and certified acc to EN 1822 -ISO 29463 for H13
- Operating temperature up to 120°C

Filter Class (EN 1822)	H13, H14
Filter Class (ISO 29463)	ISO 35H, 45H
Media	High quality glass fiber
Frame	Polystyrene (PS)
Rec. Final Pressure Drop	Initial pressure drop x2, (max. 600 Pa)
Max. Operating Temp.	80°C
Gasket	EPDM, EPDM Flat continous and PU Foam
Design	V-Module

Filter Class (EN 1822)	H13
Filter Class (ISO 29463)	ISO 35H
Media	High quality glass fiber
Frame	Galvanized, Stainless Steel
Rec. Final Pressure Drop	Initial pressure drop x2, (max. 600 Pa)
Max. Operating Temp.	120°C
Gasket	Silicon
Design	V-Module

EFFICIENT V-COMPACT FILTER (METAL-PLASTIC FRAME)

Applications:

Final filter for HVAC or cleanrooms Gas turbines air intake system

Highlights:

Applications:

Highlights:

Applications:

Highlights:

260°C

temperature conditions

- Tested and certified acc to EN 1822 -ISO 29463 for H13 - H14
- Large filtration area
- Simple and light weight
- Low initial pressure drop

Final filter for HVAC or cleanrooms

Tested and certified acc to EN 1822 - ISO 29463 for H13 - H14

Final filter for hygenic AHU's under high

Temperature resistant up to 120°C,

Tested and certified acc to EN 1822 -

Corrugated aluminium seperator

Static electricty granding cable

available on request

ISO 29463 for H13 - H14


Guaranteed leak-free

Large filtration area Simple and light weight Low initial pressure drop

E10, E11, E12, H13, H14,
ISO 15E, 25E, 35H, 45H
Glass fiber
Polystyrene (PS), Galvanized, Stainless Steel
Initial pressure drop x2, (max. 600 Pa)
80°C
Available on request

SPECIFICATION

EFFICIENT RIGID FILTER

HEPA FILTER WITH

ALUMINIUM SEPERATOR (METAL-MDF FRAME)

EFFICIENT DUCT TYPE FILTER

Applications:

Final filter for HVAC or cleanrooms Suitable for duct applications

Highlights:

- V-shaped design
- Individiual test certificate (acc. to EN 1822 - ISO 29463)
- Simple and light weight

E10, E11, E12, H13, H14
ISO 15E, 25E, 35H, 45H
Glass fiber
Anodized extruded aluminium, Polystyrene (PS)
Initial pressure drop x2, (max. 600 Pa)
80°C
100 and 130 mm
Available on request

Filter Class (EN 1822)	E10, E11, E12, H13, H14
Filter Class (ISO 29463)	ISO 15E, 25E, 35H, 45H
Media	High quality glass fiber
Frame	Galvanized Steel, Stainless Steel, MDF
Rec. Final Pressure Drop	Initial pressure drop x2, (max. 600 Pa)
Max. Operating Temp.	80°C, up to 120°C, 260°C
Flange	Without, single, double
Gasket	Silicon, EPDM and PU Foam
Seperator	Hotmelt

Filter Class (EN 1822)	E10, E11, E12, H13, H14
Filter Class (ISO 29463)	ISO 15E, 25E, 35H, 45H
Media	High quality glass fiber
Frame	Aluminium, Galvanized & Stainless Steel
Rec. Final Pressure Drop	Initial pressure drop x2, (max. 600 Pa)
Max. Operating Temp.	80°C
Model	V (Vertical), H (Horizontal)

24

GAS PHASE FILTRATION

Active Carbon

Cartridge Filter

steel

50°C

145 mm

< 50% RH

Activated Carbon

Impregnated Medias

Galvanized and painting

EPDM (for each cartridge)

Filter Class

Filter Type

Media

Frame

Gasket

Max. Operating Temp.

Outer Diameter

Recommended

relative humidity

Media

SPECIFICATION

AC between sythetic layer

ACTIVATED CARBON

V-COMPACT FILTER

Applications:

Gas-phase filtration Offices Hospitals Airports

Highlights:

Remove volatile organic compounds (VOC's)

Smell and corrosion control in industrial and

Wide range of molecular contamination

High efficiency in gas filtration

Pellet (granulated) activated carbon

Filled with a wide variety of activated

carbon medias including impregnated

Easy assembly to mounting frame

- Odors
- Compact design

commercial applications Kitchen ventilation

Robust and air tight

medias on vibration table

Simple installation and handling

ACTIVATED CARBON

CARTRIDGE TYPE FILTER Applications:

ACTIVATED CARBON

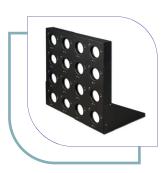
SINGLE CARTRIDGE Applications:

issues

.

•

Highlights:


Smell and corrosion control in industrial and commercial applications Kitchen ventilation Wide range of molecular contamination

Highlights:

- High efficiency in gas filtration
- Pellet (granulated) activated carbon
- Robust and air tight .
- carbon medias including impregnated medias on vibration table

Media	Activated Carbon Impregnated Medias
Frame	Galvanized and painting steel
Max. Operating Temp.	50°C
Gasket	Standard for cartridge
Outer Diameter	145 mm
Recommended relative humidity	< 50% RH

ACTIVATED CARBON CARTRIDGE FRAME

Applications:

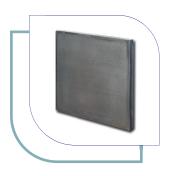
Activated carbon cartridge filters

- Galvanized
- **Powder Coated**
- Equipped with a special compressionwrench for easy assembly

Frame	Galvanized, powder coated
Number of cartridge	4 - 8 - 12 -16
Outer Diameter	145 mm
Dimensions	305 x 305 mm 305 x 610 mm 508 x 610 mm 610 x 610 mm

iss	ues		

- Filled with a wide variety of activated


Frame	Polystyrene (PS)
Max. Operating Temp.	50°C
Туре	High efficiency, activated carbon
Media Weight	400gsm
Facequard / Gasket	Available on request

GAS PHASE FILTRATION

SPECIFICATION

ACTIVATED CARBON

(PELLET) PANEL FILTER Applications:

Smell and corrosion control in industrial and commercial applications

Wide range of molecular contamination issues

Highlights:

•

•

•

- High efficiency in gas filtration
- Pellet (granulated) activated carbon
- Easy assembly to mounting frame
- Robust and air tight •
- Filled with a wide variety of activated carbon medias including impregnated medias

Filter Class	Activated Carbon
Media	Pellet type carbon
Frame	Galvanized
Max. Operating Temp.	50°C
Gasket	Without, EPDM
Recommended relative humidity	< 50% RH

Activated Carbon

Galvanized

50°C

50%

carbon

400gsm

48 - 96 mm

Without, EPDM

AC between sythetic layer

High efficiency, activated

ACTIVATED CARBON PANEL FILTER

ACTIVATED CARBON ZIG-ZAG FILTER

Applications:

Gas-phase filtration	
Offices	
Hospitals	
Airports	

Highlights:

- Remove volatile organic compounds (VOC's)
- Odors •
- Compact design •
- Simple installation and handling

Appli

Applications: Pre-filter for HVAC Offices	Media	Synthetic fiber impregnated with carbon
Hospitals Airports	Frame	Galvanized Steel
Highlights:Synthetic fiber impregnated with carbonEasy assembly	Max. Operating Temp.	50°C

Standard depth

Filter Class

Max. Operating Temp.

Relative Humidity

Media Weight

Media

Frame

Туре

Gasket

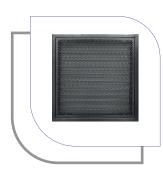
E Odors

AIR FILTER TECHNOLOGY

26

ACCESSORIES

HEPA FILTER BOX


Applications:

Microelectronics Laboratories Life science Healthcare Food and Beverage Industry

Highlights:

- Test ports for pressure drop and aerosol sampling
- Available air flow adjustment damper fitted to the spigot (on request)
- Available in various construction and dimensions
- Simplified maintenance and disinfection
- Powder coated or stainless steel material
- Central, corner, side fixing for diffuser
- Duct connection type: Top, Side, Z (Lower ceiling heights)
- Equipped with seal test groove acc.to DIN 1946-4 (Optional)

RETURN AIR GRILLE

FILTER FRAME HOLDING

Applications:

Applications:

Life science

Cleanroom

Installation frames for Pre filters in AHU's or ventilation systems

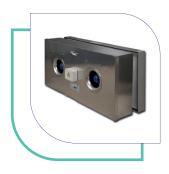
Highlights:

- Grill surface suitable for easy cleaning
- Compliant with cleanroom requirement
 Design possible with two stage filtration or HEPA filter
- Design possible with two s
- Easy installation

Highlights:

- Capable of working with diverse selection of air filters
- Compact design with stability
- Safe-holding with clips
- Robust construction
- Easy filter replacement

HEPA FILTER FRAME HOLDING


Applications: Installation frames for HEPA filters in AHU's or ventilation systems

- Sealing guaranted, high tightness
- Powder coated or stainless steel material
- Compact design with stability
- Robust construction
- Equipped with seal test groove acc.to DIN 1946-4 (Optional)

CLEANROOM EQUIPMENT

FAN FILTER UNIT (FFU)

Applications:

Microelectronics Laboratories Life science Healthcare Food and Beverage Industry

Highlights:

- Easy installation into cleanroom grids
- Guaranteed leak-free
- Self-contained ceiling fan filter unit
- Low operating cost, low wattage
- AC or EC fans
- Silent operation (<65 dBA)
- Uniform air velocity
- Replacement HEPA filter from room side or ceiling side
- Test aerosol inlet nozzle (DOP/EMERY test)
- Adjustable airflow with variable speed controller on request
- Differential pressure gauge available on request

LAMINAR FLOW with FAN FILTER UNIT (FFU LF)

Applications:

Cleanroom Laboratories Life science

Microelectronics

Food and Beverage Industry

Highlights:

- Test aerosol inlet nozzle (DOP/EMERY test)
- Replacement HEPA filter from room side or ceiling side
- Perforated stainless steel diffuser ensures uniform air distribution
- Modular design with Compact, Seperated and Gel type FFUs Silent operation (<65 dBA)
- Body structure fully made in stainless steel AISI 304 or AISI 316
- Provide laminar air from the LF unit @ 0.45 m/s ±20%
- Ceiling suspended or free-standing with support legs
- Portable or ground mounted
- High technology EC fans
- Improved plenum design for better air flow distribution
- Available in various dimensions
- BMS, MODBUS Connection available

CONTAINMENT BOOTH (DFB)

Applications:

/ ppiloadiono.
Cleanroom
Life science
Food and Beverage Industry
Cosmetic
Dispensing Booth

- Down Flow Booth
- Weighing and Sampling Booth •

Highlights:

- Class ISO 5 according to ISO EN 14644-1
- Laminar airflow velocity of 0.45 m/s ±20%
- Used for production, weighing, sampling and packaging
- Leakage test with test aerosol according to ISO 14644-3 for **HEPA** filters
- Optional cooling coil systems for temperature regulations
- In various dimensions and safe working zones
- Safe change filter configuration available

SAFE CHANGE HOUSING - BIBO (USCH)

Applications:

Life science Radioactive Laboratories Nuclear Medicine Nuclear Power Plants Biotechnical Facilities Animal Facilities Epidemic & Isolation Products .

- BSL3 & BSL4 type applications
- Versatile modular system
- Robust and strong construction
- Self-adjusting filter sealing mechanism
- Available powder coated or stainless steel
- Single or multible filter stages
- Optional manual scanning system
- Table and accessories set for easy filter change

ULPATEK Filter Testing Laboratory

HEPA / ULPA Filter Test System - HF-SCAN 4002/2

HEPA / ULPA Filter Test System - HF-SCAN 3004

ISO 16890 Test Sytem - FTS 3401

HEPA / ULPA Filter Test System HF-OIL MIST 1200

Filter Media Test System FMT 102

Performance Test System - PTS 5002

NOTES

Advanced filtration for a better future!

Yassiören Mahallesi Hadımköy Caddesi No: 158, Akpınar Sanayi Bölgesi, 34277 Arnavutkoy / Istanbul / TURKEY

L+90 212 623 0300 🛛 🔀 info@ulpatek.com

www.ulpatek.com